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On the melting of a semi-infinite body of ice 
placed in a hot stream of air 

By LEONARD ROBERTS* 
Department of 3%theniatics, Massachusetts Institute of Technology 

(Received 7 February 1958) 

SUMMARY 
A simple mathematical model is proposed to describe the 

steady melting of a body of ice which presents a plane surface 
transverse to a stream of hot air; the temperature of the air is 
such that vaporization does not occur. 

The analysis takes into account the convection of heat away 
from the surface by the water released in melting and the results 
show that the rate of transfer of heat to the body and thus the 
rate of melting, is reduced by as much as 46% by this convection. 

Simple approximate expressions are obtained for the rate of 
melting, the thickness of the water layer, and the thickness of the 
thermal boundary layer in the ice, in terms of a basic parameter S 
which can be calculated in terms of known quantities. These 
results are compared with those obtained by a separate Pohlhausen 
calculation and are found to be in good agreement. 

It is also shown that there exists a thermal boundary layer, 
in the body, of thickness much greater than that of the boundary 
layer in the air, in which the temperature changes rapidly from 
its value at the melting surface to its value in the far interior. 

1. INTRODUCTION 
When a non-insulated body is placed in a stream of hot air a transfer 

of heat to the body takes place; when the temperature of the stream is 
high enough the body may melt and even vaporize. The rate at which 
the body melts is determined by the amount of heat available for latent 
heat; this is the difference between the total amount of heat transferred 
to the surface and the amount conducted away from the surface to the 
interior of the body. 

The present paper considers the steady melting of a semi-infinite 
body of ice whose plane surface is placed normal to a stream of hot air 
(see figure 1); the analysis may be regarded as applicable to the conditions 
in the neighbourhood of the forward stagnation point of a blunt-nosed 
body of arbitrary shape. The temperature range considered is such that 
vaporization does not occur. It is possible, under certain simplifying 
assumptions, to reduce the Navier-Stokes and energy equations to two 
ordinary differential equations which are solved by an approximate method 
for both the plane and axisymmetric flows. 

* Now at Langley Aeronautical Laboratory, N.A.C.A. 
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An interesting and important feature of the flow is the shielding effect 
of the thin layer of water which forms between the ice and the air. T h e  
rate of heat transfer to the body, and thus the rate of melting, is reduced 
in two ways by the presence of the water layer: firstly, the temperature 
of the air-water interface is raised above that of the melting surface, 
which tends to reduce the rate of heat transfer from the air, and secondly, 
convection of heat takes place in the water layer which further reduces 
the rate of heat transfer across the melting surface. 

Z 
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Figure 1 
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Figure 2. Graph of the shielding ratio R2. 

It is found that the first shielding effect is small, but that the second 
In  figure 2, there is shown the shielding effect may become appreciable. 

shielding ratio R,, defined as 
rate of transfer of heat from water to ice 
rate of transfer of heat from air to water ’ 

R, = 
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z's the basic parameter S defined by 

where cpl is the specific heat of air, c3 is the specific heat of ice, L is the 
heat of fusion of ice, and T,, T, and T-, are respectively the temperature 
of air at large distances from the body, the temperature of water at the 
melting surface (taken always to be O'C), and the temperature in the far 
interior of the body. (The temperature T" at the air-water interface also 
plays an important role in the theory, but has been eliminated from the 
final results.) 

It should be noticed that the shielding effect is largely independent of 
the flow conditions, since for ordinary conditions, the shear acting on the 
water layer is always sufficiently large to carry the water away at a reasonable 
speed compared with the rate of melting. On the other hand, the details 
of the flow in the water layer, such as its thickness and the rate at which the 
ice melts, do depend on the conditions of flow. 

2. DESCRIPTION OF THE FLOW AND METHOD OF SOLUTION 

2.1. The flow con$guration 

In  order to reduce 
the problem to a steady state the coordinate system chosen has axes fixed in 
the melting surface ; in this coordinate system the interior of the ice moves 
towards the stationary melting surface, x = 0, with constant velocity, wm, 
equal to the rate of melting. 

Considerations of the continuity of mass lead us to expect (under the 
assumptions of 52.2) a water layer of constant thickness between the ice 
and the air stream. From the Hiemenz solution for flow near a stagnation 
point (which will be recalled in detail later) is is known that the horizontal 
component of velocity in the air is proportional to the horizontal distance x 
from the stagnation point, and it follows that this is also true of the motion 
of the water since the velocity is continuous at the interface. Also, since 
the rate of heat transfer from the air, in the vertical direction, is independent 
of x, it is to be expected that the body will melt at a rate which is independent 
of x. Thus the amount of water crossing a vertical line at the position 
x = x1 is that which has been produced by melting between the line of 
symmetry x = 0 and the line x = x,; this amount is proportional to xl. 
The ratio of the amount of water to the velocity is constant, i.e. the thickness 
of the water layer is constant. 

Because of the continuity of velocity and stress at the air-water interface 
z = z*, the motion of the air is affected only slightly by the presence of the 
water. (It will be shown that the velocity of the air at the interface is of 
the order of the square root of the density ratio, (pair/pJvater)1'2 which is 
0(10-2) for most of the temperature range under consideration.) The 
Hiemenz solution, modified to take account of the variation with 

The flow considered is that shown in figure 1. 
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temperature of the density, viscosity, and thermal diffusivity of air, is a 
good approximation for the flow now under consideration. I n  a region 
near the stagnation point the flow velocities are small and compressibility 
effects are ignored. 

I n  the water it is assumed that the density and the thermal diffusivity 
are constant but the viscosity varies with temperature. 

2.2. The basic assumptions 
Only the case of laminar flow is considered in this paper. I n  addition, 

the following approximations are made in order to simplify the analysis. 
(1) The  magnitude of the components of velocity in the air are such 

that the approximation M = 0 ( M  = Mach number) may be made. The  
equation of state is then plT = constant, where p1 is the density and T is 
the absolute temperature. 

(2) The  viscosity p1 and thermal conductivity k, of the air obey the laws 

'1 - _  - constant. 
T 

= constant, 
T 

(3) The specific heat of air cpl is constant. 
(4) The Prandtl number for air, o,, is constant (this is implied by (2) 

( 5 )  Viscous dissipation is negligible. 
(6) The  density p,, thermal conductivity k,, and the specific heat c2, 

(7) The  melting temperature T,, the specific heat c,, the thermal 

and (3)) .  

of water are constant, but the viscosity p, varies with temperature. 

conductivity k,, and the density p3, of ice are all constant. 

2.3. The method of solution 
The  solution is developed in the three regions, z > x* (air), z < 0 (ice) 

and 0 < z < x" (water). At the interfaces x = z" and x = 0 certain quantities 
which appear in the boundary conditions are not known, a priori, but are 
part of the answer; this introduces a number of parameters which must 
be determined as part of the overall solution. The  most important of these 
are T", the air-water interface temperature, x", the water layer thickness, 
and w,,, the melting rate (or the non-dimensional counterparts of these 
quantities). 

In  the actual computation, families of solutions were found corresponding 
to a range of these parameters and the appropriate member of the family 
,determined by matching the solutions at the interfaces. 

The only truly arbitrary parameters in the problem are T,, T-, and &, 
which characterize the outside potential flow of the air (u N Plx as u"+ a), 
and the solution must be expressed in terms of these three quantities. 
In  some sections of the paper it is easier and more convenient to express 
the solution in terms of T* rather than T ,  but all results are given 
eventually in terms of T,, T-,  and P,. 
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The  solution of the equation for heat transfer in the melting ice is first 
obtained in simple exact form, in terms of the unknown melting rate w,,,. 
Attention is then turned to the equations which govern the motion of the 
air. These are reduced to a system of two ordinary differential equations 
of which an approximate solution is obtained involving two unknown 
quantities, T* and E (a small parameter occurring in the velocity at the 
air-water interface). 

The  equations for the water layer are also reduced to ordinary differential 
equations and it is shown that the number of boundary conditions to be 
satisfied at z = 0 and z = z" are just sufficient to determine the solution 
in the water layer and all the unknown parameters that are introduced. 

Simple estimates are then deduced, without solving the equations for 
motion in the water layer, which give useful approximate results concerning 
the rate of melting and the shielding effect of the water. Finally, a better 
approximation which uses the Pohlhausen method to determine the water 
layer thickness and the approximate velocity and temperature profiles in 
the water is made; this also gives a check on the first simple estimates. 

3. HEAT TRANSFER IN THE ICE 

The transfer of heat in a solid moving with constant velocity wm (unknown) 
in the z-direction is governed by 

the boundary conditions for the present problem are 

T = T,, 
T = T-, 

at z = 0, 

as z+ - to, 

(3.1)' 

where the quantities p3, c3, k,  and T, are those defined in 9 2.2. 

is obtained by elementary methods and is written as 
The  solution of (3 .1)  which is a function of z only and satisfies (3 .2)  

This gives the rate of heat transfer at x = 0 to the interior of the ice, 

(3.3). 

equation (3 .4)  will be required later in the formulation of the boundary 
conditions, at z = 0, for the equations which describe the motion of the 
water. 

The  form of the solution (3 .3)  shows that there is a thermal boundary 
layer near the surface z = 0 in which the temperature changes from To 
to T-,  ; the thickness of this thermal layer is O(ks/wmp3 c3)  and thus varies 
inversely with the rate of melting and directly with the thermal diffusivity, 
k3/P3 c3. 
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4. THE MOTION OF THE AIR 

4.1. The equations and the boundary conditions 

Consider the steady flow of air of variable density pl, viscosity pl, and 
thermal conductivity k,, at zero Mach number in two dimensions. If the 
components of velocity in the x- and z-directions are u and w respectively, 
and the pressure is p ,  then the equations of continuity, momentum, and 
energy are 

+ L a  {pl(* ax + ")}, ax (4.3) 
P1 ax 

u- aT + w -  aT = - p(Plg) + & ( P 1 E ) } ,  (4.4) ax ax plol ,ax 
where cpl = constant and u1 = plcpl/kl = constant are respectively the 
specific heat at constant pressure and the Prandtl number, and dissipation 
has been neglected*. 

At large distances from the body the flow has the potential form 

u = P1x, w = -&z: T = T,, 
SO that the boundary conditions for the problem under consideration are : 

I (4.5 ) 
zi = &EX, w = 0,  T = T*, at  x = z* ;  

u N P1x, T-tT,, as x+ co. , 
Here and T, are given by the potential flow ; T" and E (a small parameter 
which represents the effect of the water layer on the motion of the air) 
are unknown and will be determined by the rate at which the ice melts. 

I t  is well-known that the Navier-Stokes equations for incompressible 
flow have an exact solution which represents flow near a stagnation 
point. This solution, the Hiemenz solution (Goldstein 1938, vol. 1, 
pp. 139-140), has the form 

where 
u = 81xf'(r), w = - (B1~l/P1)1/2f(d, 

r = (PlPl/Pl)1/2x9 
* The terms p/p  c,(azt/a~)~ and i i /p cp aplax which represent the change in 

temperature due respectively to the heat generated by skin friction and the adiabatic 
compression are O((y-1)M2) compared with other terms in equation (4.4), and 
have been neglected. A comparison of the results of Levy & Seban (1953) and 
Brown & Donoghe (1951) shows that this neglect is justified. 



The melting of ice in a hot stream of air 51 1 

and f satisfies the differential equation 

and the boundary conditions 

(a dash denotes differentiation with respect to 7) .  
I n  this solution the fluid is assumed to have constant properties so that 

the temperature, T = To + ( T ,  - To)g (To = wall temperature) may be 
calculated separately from the reduced energy equation 

f ’ 2 - f f l l =  1 +f” (4.6) 

f ( 0 )  = f ’ ( O )  = 0, f’( a) = 1 (4.7) 

1 g“ + 0, fg’ = 0, 

with g(0) = 0, g(a)  = I.,  
For such a flow the boundary layer has constant thickness and the vertical 
component of velocity and the temperature are constant in layers at a 
uniform distance from the wall. 

In  an analogous way we seek a solution which has similar properties 
but which takes account of the effect of the temperature field on the density 
and viscosity (through the assumptions of $2.2) and consequently on the 
velocity field. 

We consider a solution of the form 

where p1 T = pa T, ,  and p J T  = p,/T,. With new dependent variables 
f1(7,), g,(ql) and the new independent variable ql, (4.1) is satisfied, 
(4.2) becomes 

(4.10) 
and (4.4) becomes 

(4.11) 
where a dash now denotes differentiation with respect to q,. 

f ;. -f* f ;  = g, +f?, 

g; + 0, fl g; = 0, 

The  pressure p ,  is given by 
p = - ”  2P.O 8 2  1 x 2 - n-(VI)PlPLa, 

where, from (4.3), ~ ( 7 , )  satisfies the reduced momentum equation 

The  boundary conditions (4.5) reduce to : 
n-’ = (fl(f1 g1)’ + [Hfl g1)’ + k l  fa’ -g1 f 3. (4.12) 

An approximate solution of (4.10) and (4.11) with the boundary 
,conditions (4.13) is obtained by considering a perturbation, in E, of the 
particular solution for which E = 0, i.e. 

f ,  = +o + €4, + O(e2), and gl = $o + e$, + O(e2). (4.14) 
‘The solution (+o:$o) is the first approximation and takes no account of the 
effect of the motion of the water. 
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4.2. The initial approximation, E = 0 
When E = 0, the boundary conditions (4.13) are those for flow past a 

solid boundary ; the approximate solution of the system (4.10), (4.11) 
with (4.13) has been given by Levy & Seban (1953); it was assumed that 
the solution q50, $Io has the approximate form 

so that the boundary conditions as ql+ co are satisfied if d and D are 
negative; the non-dimensional temperature at T~ = 0 is +o(0) = ( 1  -K) .  
T h e  constants a, b, c,  d,  and A,  B, C,  D,  are determined by satisfying the 
boundary conditions and the differential equations as far as possible at 
ql = 0. T h e  system of algebraic equations which results reduces to the 
following pair which give a and A in terms of K 

1OKA [2a2 - ( 1  - K ) ]  = 24a5 - 5a3[12( 1 - K )  - 11 + 
+2a[15(1 - K ) 2 -  ( 1  - K ) ] ,  (4.16) 

24A5-5a,aA2 = - a l ( l - K ) A ;  

the remaining unknown coefficients are then easily expressed in terms of K.  
The  solution a ( K ) ,  A ( K ) ,  of (4.16) has been tabulated for some values 

of K ;  further work was required in an extended range for K ,  for the needs 
of the present paper. (The quantities - a  = (bi(0) and - A  = +,!,(O) are 
important since they appear in the expressions for the skin friction and the 
rate of heat transfer respectively at ql = 0.) 

4.3. Flow past the slowly-moving layer of water 

from q50, +o satisfy the linear equations 
The  functions q5,, $I1 which are required for the small perturbation 

(4.17) 

where terms of O(9) and higher have been neglected. The  solution of 
(4.17), chosen so that the total solution satisfies the boundary conditions 
(4.13), is 

and the total solution is 

+~++oq51-2+bq5;++gq5,+$,= 0, 1 
$ ; + ~ l + o + ; + ~ l + ; + l  = 0, 1 

4, = -a-l&, $Il = -a-l+;, 

f ,  = $0 - g, = $0-  (4.18) 

from which the relation between T* and K is obtained, 

(4.19) 
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4.4. Important physical quantities eeraluated at the air-water interface 

Before the motion of the water layer is considered it is necessary to 
evaluate the components of velocity, the components of stress, the rate 
of heat transfer, and the temperature, at the air-water interface z = x" 
(or ql = 0), since these quantities determine the amount of water produced 
and the manner in which it flows. 

At x = x", the horizontal and vertical components of velocity are 
respectively 

u" = P I E X ,  w" = 0 ;  (4.20) 

the horizontal and vertical components of stress are respectively 

T" - + - (2  l:) 
= x@( -a)(plpl)l 'z (4.21). 

y" = - p + p l  2 -  - -  - + - { :: :(:: E)} 
(It is not necessary to evaluate the expression in curly brackets explicitly 
unless the distribution of stress along the air-water interface is required.) 
The  rate of transfer of heat is 

and the temperature is 

T " =  T,[1-K(l-t;)]. (4.24). 

I n  the above expressions, p1 and T ,  are parameters prescribed by the 
potential flow, whereas E and T" (and therefore, K, a, and A )  are quantities 
which must be determined as part of the solution of the whole problem. 

The  first shielding effect due to the raising of the air-water interface 
temperature to T" may be written as the ratio, 

Rate of heat transfer from the air with water layer 
Rate of heat transfer from the air without water layer 

(4.25) 

When T,  is large compared with T" and T,, (4.25) may be approximated 
by (T ,  - T")/(T,  - T,) since A(T/T,) given by (4.16) is very nearly 
constant and cA/a is very small. 

The  ratio ( T ,  - T")/( T,  - T,) is determined from the final solution 
to the whole problem in a later section. 
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5. THE WATER LAYER 

With the expressions (3.4) and (4.20) to (4.24)) which determine the 
rate of production and the subsequent motion of the water, we are now in 
a position to consider the equations of motion and the boundary conditions 
for the water layer. 

5.1.  The equations of motion 
The  equations which govern the motion of, and the transfer of heat in, 

the layer of water of constant density p2, thermal conductivity k,, and 
specific heat c2, but variable viscosity p2, are 

au aw 
- + - = 0 ,  ax ax 

where dissipation has been neglected. 

at x = x" we consider a solution of the following form: 
I n  order to satisfy the continuity of the expressions (4.20) to (4.24), 

24 = 82xfil(112)9 

T = Tm + (T" - Tmlg2(112), 

w = - ( P 2 m P 2 / P 2 ) 1 / 2 f 2 ( 7 7 2 ) ,  1 (5.5) 

112 = ( P 2 ~ z / ~ z r n ) l ' ~ ~ ,  J 
where pzm = p2 at T = T,, and ,B2 is a parameter which must be determined 
from the boundary conditions at the air-water interface z = x". A dash 
denotes differentiation with respect to qZ. 

With dependent 
variable q2, equation 

.- 

variables- f 2 ( q 2 )  and g2(q2) ,  and the independent 
(5.1) is satisfied, (5.2) becomes 

and (5.4) becomes 
g; + azm f i g ;  = 0. 

aw 
ax 

(5.7) 

(5.8) 

The  second momentum equation (5.3) may be integrated to give 

p + t ( p 2  ,Q2 x2 + p2  w2) - p2 - = constant. 

5.2. The boundary conditions 
(i) At the air-water interface 
The  quantities, u", w", 7*, v") g" and T" given by the solution of (5.6) 

and (5 .7)  must be equal to the expressions for these quantities given by 
(4.20) to (4.24) ; i.e. if the air-water interface is given by 

then at q2 = qg, 
112 = 11; = (B2P2 /P2rn)1 /2~" ,  

B Z L ( 1 1 3  = 81% f 2 ( T C )  = 0, (5.9) 



The melting of ice in a hot stream of air 515 

~ ~ / z ( p z ~ r m ) l i z ~ f ~ ( l ~ )  = ( - a ) / 3 ~ / z ( p l p l ) 1 ~ z [ 1  - ;(l - K ) ] .  (5.10) 
Pzm 

A comparison of terms involving x2 in (4.2) and (5.8) gives 

4 P z  P; = if * /35 (5.11 

T h e  heat transfer condition is 

and the temperature T = T X  gives 
gz(1") = 1. (5.13) 

The small parameter E is found by elimination of /3z//31 from (5.9) and (5.1 l ) ,  
1.e. 

E = f ; ( 1 3 ( P m / P z ) 1 i z *  (5.14) 

Numerical values of E show that it is 0(10-2) so that the neglect of quantities 
of O ( 2 )  in $ 4  is justified. 

(ii) At the melting surface 
There are three boundary conditions to be satisfied at the melting 

(a) the mass of water introduced is equal to  the amount of the ice lost 
by the body, 

(b )  the heat transferred from the water is equal to that transferred to 
the interior of the ice plus the latent heat of melting, 

(c) water is produced at  the melting temperature T,. 
The boundary conditions (a) and (6) are most easily formulated in the 

following way. T h e  ice melts at a constant rate wm so that, for unit surface 
area, in unit time, 

and, 

thus the equivalent velocity of the water at the melting surface is 

surface z = 0 ; these are : 

mass of water produced = wap3 

volume of water produced = w,  p3/pz  ; 

4 0 )  = W,P3/PD (5.15) 

and since the heat transfer and thus the melting take place in the z-direction 
and are independent of x, we also have 

uz(0 )  = 0. (5.16) 

The heat transfer condition is written 

(5.18) 
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Equation (5.18) is a statement that in unit time the heat transfer 
K2(aT/i3x), = o+ causes the mass w,(0)p2 ( = w, p3)  of ice to be raised through 
a temperature difference T,  - T-, and then supplies the heat to melt it. 

f;(O) = 0, (5.19) 
In terms of f i ,  g, and qz, (5.16) and (5.18) are 

and the condition (c) gives 
g2(0) = 0. 

(5.20) 

(5.21) 

Equation (5.15) is used to calculate w, when wz(0)  has been determined 
as part of the solution. 

A solution of the equations (5.6) and (5.7) is required subject to the 
nine boundary conditions (5.9) to (5.13), (5.19) to (5.21) ; these conditions 
are just sufficient to obtain a unique solution and determine the parameters 
T+, E, 72" and p2 (for given quantities T,, T-=, and PI) when K,  A, and a 
are expressed in terms of T+ and E through (4.24) and (4.16). 

Clearly, the exact calculations of this system of differential equations 
and boundary conditions would be complicated. I n  the following section, 
simple approximate relations which give a good overall picture of the 
intersrelation among the various parameters are derived and the results 
are checked by applying a second, more accurate, approximate method. 

6. THE SHIELDING EFFECT AND THE APPROXIMATE METHODS OF SOLUTION 

The  important features of the flow in the water layer are the rate of 
convection of mass, which is related to the rate of melting of the ice, and the 
rate of convection of heat which causes a reduction in the rate of heat transfer 
to the ice ; this, in turn, controls the rate of melting. In  the steady state 
the rate of melting is such that these effects balance. 

T h e  important non-dimensional quantity that determines the rate of 
melting presents itself when (5.20) is written in the form 

It is seen that the parameter 

is significant in the determination of j 2 ( 0 )  (which is related to the rate of 
melting) in terms of g,'(O) (essentially the rate of heat transfer to the ice). 
Although P contains the unknown temperature T+ it is convenient to express 
all quantities in terms of P wherever possible and thus obtain implicit 
relations from which T+ can be eliminated finally. 

A simple expression which describes the shielding effect of the water 
layer is found in the following way. Equation (5.7) is integrated between 
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the limits 0 and q; to give a heat balance equation 
x 

5 17 

since g,(O) = 0 and .f2(q8) = 0. Equation (6.1) is written 

Thus 

* x 

Since x 1; f i g 2  dq2 and x 11% f; dq2 are respectively the rates of transfer 

of heat and mass in the x-direction by convection, g2 is seen to be the mean 
non-dimensional temperature to  which the water is raised during convection. 
A measure of the shielding effect is given by the ratio 

Rate of transfer of heat from water to  ice 
Rate of transfer of heat from air to water 

The  rate of melting may be expressed in terms of q" and TX by elimination 
of gk(0) from (6.3) and (6.6): 

1 +g2 P 
gB(7") = p u2,( -f2(0))7 

which gives 

Equation (6.7) states that in unit time, for unit area of ice surface, the 
heat 4" transferred across the air-water interface first raises the temperature 
of the mass w,p3 of ice from T-,  to T,, melts it and raises the temperature 
of the water produced from T,, to the average temperature T,, +g2( T x  - Tn2) 
during convection. 

Q" = CATm- T-m)+(L+g,c,(T"- T,,)}W,P,. (6.7 1 

6.1. Simple estimates 
Simple expressions may be obtained for the shielding ratio R,, the 

rate of melting, and the thickness of the water layer and the thermal boundary 
layer in the ice. 

We assume that the effect of the motion of the water on the heat transfer 
and stress at the interface are negligible so that quantities of order E are 
ignored when terms of order unity are present. It is also assumed that the 
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main features of the 
temperature profiles 

flow do not depend critically on the local velocity and 
which are given the forms 

these expressions satisfy the boundary conditions 

The average non-dimensional temperature j 2  is expressed in terms of u, 

and the shielding ratio 

fL(0) = 0 ,  fi(7") = 0 ;  g,(O) = 0, gz(77") = 1. 

g z  = 3 + 801, by 

so that u is given by the positive root of the equation 

Pa2+(12+3P)~-12  = 0. (6.9 1 
The melting condition (6.1) and the air-water interface stress condition, . .  
simplified b'; (6.8), are 

P u  

o z m  7 2  
-f2(0) = -< (6.10) 

and 

(6.11) 
PZ Pzm 

which give 

and 

Equations (6.12) and (6.13) expressf,(O) and 7; in terms of an unknown 
parameter T" (through P and a). However, the heat transfer condition 
(5.12) is used to express P(T*) in terms of a basic parameter 

We have, from (5.12), (4.24), (6.8) and (6.12) 

and since 

then S is related to  P by 

(6.14) 
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The quantity A varies only very slowly over a large range of the temperature 
ratio T"/T and an average value is taken. Average values of &!/,u2, and a 
are also used. The  factor (p1p1/p2p2nb)-1'3 depends on the stagnation 
pressure but has been assumed independent of temperature throughout 
this paper. 

Equation (6.15) is used in order to plot quantities of interest as functions 
of S rather than of P. The  rate of melting w, = w(0)p2/p3 is given in 
non-dimensional form by 

wm ( - p1 )112 - - (">2/3 ( P ~ P ~ ~ ) ~ / ~  ( - h a ,  P ~ ~ ) ~ ' ~  , (6.16) 
P1 P1 "2m P3 P1Pl Pz 

and the thickness of the water layer by 

When the average values of ,u:/p2m, A, a, are inserted together with 
appropriate values of pl ,  p2, p3 etc. (for air-water-ice) we have, 

and 

(6.18) 

(6.19) 

where P is related to S by 

S = 0*24P+ 1 0 * 9 1 ( P ~ ) ~ ~ ~ ( l  +f2P) .  (6.20) 
It is seen from (6.18) that the rate of melting w, is 0(10-2) times a 

typical vertical velocity in the air boundary layer, while (6.19) shows that 
the thickness of the water layer is of the same order as that of the air boundary 
layer. 

The thickness 6 of the thermal boundary layer in the ice may be defined 
by 

The  non-dimensional form is written 

(6.22) 

When the numerical values are inserted into (6.22) and (6.15) is used, we 
have 

(6.23) 

It is seen that, for ice, the thermal boundary layer is considerably larger 
than the air boundary layer. 

The  existence of a thermal boundary layer of this order of magnitude 
show that the present theory is valid for bodies of finite depth during that 
time when the depth is much greater than the boundary layer thickness. 
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It also explains, in part, why the larger meteors which enter the earth's 
atmosphere do not become uniformly heated to high temperatures but 
remain relatively cool except in a small region near the melting surface; 
the thermal boundary layer would also be present if vaporization or burning 
occurred since the character of the solution (3.1) for the temperature 
distribution in the body would be the same. 

6.2. The improved approximation 
As a check on the accuracy of the estimates made in 9 6.1 an approximate 

solution of the system of equations (5.6) and (5.7) with the boundary 
conditions (5.9) to (5.13), (5.19) to (5.21) is found by the Pohlhausen method 
for particular values of T ,  and T-, and a stagnation pressure of 1 atmosphere. 
In  this method E # 0 so that account is taken of the effect of the motion of 
the water on that of the air. 

Equations (5.6) and (5.7) are written in integrated form 

The boundary conditions at v2 = 72" are 

(6.24) 

(6.25) 

1 
I (6 .26)  I 
I 

This system of equations and boundary conditions was solved, with 
T-,  = T,  (no conduction into the ice) for a range of values of T ,  such 
that T+ took values from 273°K to 373"R,  and for the single case 
T-,  = 193" K ,  T ,  = 4500" I( by assuming the following profiles 
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(the number of parameters in (6.28) is one more than the number of relations 
available; the extra condition g"(7:) = 0, from (5.7), was therefore used). 
The  results obtained by this method are to be found in $6.3. 

P 

0.125 
0.25 
0.50 
0.75 
1 .oo 
1.25 

6.3. Discussion of the numerical results 

layer was found in $4.4 as 
The  first shielding effect due to displacement of the air bythewater 

Rate of transfer from the air without the water layer 
Rate of transfer from the air with the water layer 

T ,  - T" 
T ,  - T,  

=-  

approximately. This ratio expressed in terms of S is 

Rz S i z  

Simple Pohlhausen Simple Simple 
estimate T - ,  = T, estimate estimate 

0.923 0.923 2.904 0.660 
0.859 0.857 4.841 0.654 
0.756 0.748 8.345 0.644 
0,675 0.663 11.710 0.635 
0.613 0.594 15.041 0.627 
0.568 0.538 18.300 0.620 

where P is given in terms of S through (6.20). The  parameter P has the 
range 0 < P < 1.25 when the values L = 80 cal/gm, c2 = 1 cal/gm C, 
T:,, = 100" C and T, = 0" C are used. The  parameter S obtained from 
,(6.20) has the range 0 < S < 18.30, the upper limit corresponding to 
T* = 100" C and no conduction of heat to the interior of the ice (T ,  - T-,). 
It is seen from the values of P and S that R, = 1 - cpl /c2  PIS is always between 
1.0 and 0.984 so that this shielding effect is a small one (less than 2"/b). 

The second shielding effect due to the convection of heat in the layer 
of water, given by 

R, = 
Rate of transfer of heat from water to ice 
Rate of transfer of heat from air to water 

is by no means negligible as figure 2 shows. 
The  minimum value of R,, corresponding to maximum convection 

of heat by the layer of water, is 0.538 so that approximately 46°/0 of the 
heat transferred from the air is convected by the water. The  good agreement 
between the results of the simple estimate with the values found by the 
Pohlhausen calculation (see table 1) suggests that R, is insensitive to the 
particular velocity and temperature profiles in the water layer ; it was found 
that the mean temperature j ,  varied little when the profiles were changed. 

F.M. 2 L  
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The  other quantities of interest are the non-dimensional rate of melting 
wm(pl/pl /31)1/2 shown in figure 3, the non-dimensional water layer thickness 
z*(pl /31/pl)1/2 (figure 4) and the thermal boundary layer thickness 
%l P1/cL1)l/zl (figure 5). 

.014r 

wm($' ,0061 // TWO-DIMENSIONAL 

- SIMPLE ESTIMATE 
0 POHLHAUSEN (T-m'Tm) 
A POHLHAUSEN (T-,=l93"K) 

,004 

Figure 3. Graph of the melting rate. 
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S 

Figure 4. Graph of the water layer thickness. 

The  rate of melting wm is 0(10-2) times a typical vertical velocity 
(p1pl/p1)1/2 in the air boundary layer, and the thickness of the water layer 
is of the same order as that of the air boundary layer. The  good agreement 
between the simple estimates and the Pohlhausen calculation for the melting 
rate w, is due in part to the fact that the quantity ( -  iap2m/pX)1/31 which 
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involves average values, appears in the dominant term of the right-hand side 
of (6.15) and in (6.16) so that when wm(pl/pl/31)1'2 is plotted against S 
the error caused by averaging is unimportant. The agreement between 
the simple estimate and the Pohlhausen calculation for the water layer 
thickness is not so good, however, since the averaged quantity appears as 
( - 4ap27,Jpg)-1'3 in the expression (6.17) for x*(pl /ll/p1)l/2. 

25 

20 
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- 
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Figure 5. Graph of the thickness of the thermal layer in the ice. 
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Figure 6. Graph of the relation between P and S. 

The simple estimates indicate that the thickness of the water layer 
increases with S through the whole range. However, the Pohlhausen 
calculation, which takes some account of the variation of pz, shows that 
it is possible to have a maximum thickness. Due to the ability of the water 
to convect more easily at the higher temperatures (the viscosity of water 

2 L 2  
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decreases by a factor of 6.3 in the range 0°C to lOO'C), the shielding 
effect due to convection increases even though the water thickness decreases 
slightly, as S increases. The temperature T" is found from given values 
.of T,  and T-, through 

TX = T,  + P [ L  + CS( T,  - T-,)I, 

where P is found in terms of T ,  and T-, through equations (6.20) or 
figure 6. 

Figure 7 shows typical velocity and temperature profiles in the water 
layer as given by the Pohlhausen calculation. 

(S is given in terms of T ,  and T-,.) 

, 

0.006 0.0 I0 0.014 
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0.4 - 

Tern pe ro t  u r e  

I 

Hor i zon  to1 Velocity. 
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- 

( Axisymm e t r i c )  

27 3 29 3 313 33 3 
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Figure 7. Temperature and velocity profiles. 

7. THE AXISYMMETRIC CASE 

The  methods described in the preceding sections may be applied, with 
only minor amendments, to the axisymmetric stagnation point flows. 
This  is done briefly below. 
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7.1. Heat transfer in the ice 

transfer in the vertical direction. The solution is 
Equations (3.1) to (3.4) remain unaltered since they describe the heat 

(7.1) 

from which is obtained the rate of heat transfer from the melting surface to 
the interior. 

7.2. The motion of the air 

At large distances from the body the flow has the potential form 

u = plx, w = -p1. , T =  T,, (7.3 1 
where x is now the radial distance. 

The non-dimensional variablesf,, g, and q1 are now given by 

The equations of motion and energy for flows with axial symmetry 
become 

(7.5 1 &f;2-fif; = &g,+f;", 1 
g; + q f l g ;  = 0, 1 

and the boundary conditions are 

fi(0) = 0, f;(O) = E ,  g,(O) = T+/T,, 1 (7.6) 

f;( a) = 1, g,( a) = 1. i' 
The system (7.5) and (7.6) with E = 0 has been solved by the approximate 
method described in $4.2. In the original solution (Levy & Seban 1953) 
(7.5) and (7.6) with E = 0 were shown to represent two-dimensional flow 
past a wedge ; these equations together with (7.4) here represent 
axisymmetric stagnation point flow. 

The solution fi = do, g ,  = 7,ho has the same form (4.15) but now a and A 
are given by the simultaneous equations 

5KA [2a2 - .k ( 1 - K) ] = 24a5 - 5a3 [6 ( 1 - K ) ]  + 

24A5 - 5a, aA2 = - +ul( 1 - K)A. 
+@(l -K)2-*(1 -K)] ,  (7.7) 

f 1 -4-1 - 0 2 4 ; ,  g1 = 7,ho-.a-v;, (7.8) 
The perturbed solution, for small E ,  is again 
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and at the air-water interface we have the following expressions for the 
components of velocity and stress : 

u" = PIEX, w" = 0, (7.9) 

where 7r satisfies 
7r' = fl(f1 g1)' +{HflEl)' + 3g1 A}' -g1 f ; .  (7.11) 

The heat transfer and temperature are given'by 

T* = T m [ l - ~ ( l -  31. J 
(7.12) 

7.3. The motion of the water 
The appropriate non-dimensional variables are now given by 

w = ( 2 ~ 2 m  PZ/P~)"Y~(T~),  (7.13) 1 24 = P 2  Xf;(772)> 

T = Tm + (T* - Tmlg2(772) and 772 = (2P2fz/P2m)1~2~. J 

The equations for axisymmetric incompressible flow with variable viscosity 
reduce to 

i g;+uzrnfi & = O .  J 

The boundary conditions at the air-water interface are 

(7.14) 

T* = Tm[ 1 - K (1 - 4 A ) ]  

and at the melting surface 

fi(0) = 0, gz(0) = 0, 1 
(7.16) and 
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7.4.  The approximate solutions 

Simple estimates, similar to  those obtained for the two-dimensional 
problem, are found by using the profiles 

7 2  d gz = 01 7 -(1-+---* 
rls 

The non-dimensional mean temperature gz is 
1 
unaltered, i.e. 

(7.17) 

g2 + ;= i u ,  

Pu2+(12+3P)cr-12 = 0, 
where 

and P has the same meaning as before. The shielding ratio R, is the same 
as that in the two-dimensional problem (equation (6 .6)) .  The rate of 
melting wm, the water layer thickness, and the thermal boundary layer 
thickness in the ice, are given approximately by 

Wm(pl/tL1 fip = 1.33 x 10-2(~42/3, 

x+(pl /31/pl)1/2 = 0 * 8 8 ( P ~ ) ~ / ~ ,  
and O(pl /11/pl)”2 = 6 * 2 6 ( P ~ ) - ~ ’ ~  
(average values of p;, a, and A have again been used). 

parameter S by 
The parameter P (which contains T * )  is again related to the basic 

s= C Alp+ ( 2;3)1’3 - (””1) --1’3 (2) 1/3 (--) pa 213 ( 1 +g2 P ) .  

c2 P2 P2m 

A second calculation was carried out as a check on the accuracy of the 
results by assuming the velocity and temperature profiles (6.28) and 
applying the Pohlhausen method as described in $6.2. 

7.5. Discussion of numerical results 
It  is fortuitous that the quantity ( u / ~ A ~ ) ~ ’ ~  is very nearly the same as 

the corresponding expression in the two-dimensional problem for most 
of the smaller values of T+/T,.  As T + / T ,  becomes small and R-tl a 
comparison of (4.16) with (7.7) shows that a/2A3 tends to the same limit 

Consequently the relation between S and P is the same as that for the 
two-dimensional problem to the degree of approximation used here, and 
the relation between S and P remains S = 0-24P+ 1 0 . 9 1 ( P ~ ) ~ / ~ .  The 
results for the axisymmetric problem are similar to those for the two- 
dimensional case. The relation between P and S is the same so that the 
shielding ratio R, = (1 +g2P)-l as a function of S is the same as that for 
the two-dimensional problem. The water layer and thermal layer thick- 
nesses are less and the melting rate is greater than in the corresponding 
two-dimensional flow (the factor involved differs from 42 mainly because 
different average values of a and A were used even though (a/A3)lI3 has 
the same average values). 

in both cases. 
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8. SOME GENERAL CONSIDERATIONS 

The flow past a melting body has been considered for the case of a 
semi-infinite body of ice. With this simple geometry the full Navier-Stokes 
equation (with certain restrictions) has been solved in an approximate 
manner. However, if we first make the boundary layer approximation and 
interpret x , x  as coordinates measured along and normal to the body we 
again arrive at the ordinary differential equations (4.6) and (4.8) ; thus 
the results may be applied to any body of large radius of curvature (see, 
for example, Levy & Seban 1953). 

In  most applications the high temperature T, is produced by a strong 
shock wave and since both y -  1 and M would be small, ( M  measured 
behind the shock) terms of O((y - 1)M2) would be insignificant. 

Since the rate of melting depends only on the rate of transfer of heat 
and the components of stress at the air-liquid interface (for given conditions 
at x = 2 00 and given flow properties), the method may be extended to 
include real gas effects in the air. In this connection Hayes (1956) has 
shown that these effects may be taken into account approximately in such 
a way that the stagnation point flows have similar solutions and the boundary 
layer equations once again reduce to ordinary differential equations. 

The more general problem of the melting of a body of finite length has 
no steady solution and the equations of motion reduce to partial differential 
equations; when the body length is large compared with its thermal 
boundary layer thickness the unsteady effects may be expected to be small 
and some account may be taken of them by a perturbation of the steady 
state solution. 
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